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Abstract

In this paper, the interaction of an incident harmonic plane elastic wave with the unilateral interface between a
layer and a half-space has been investigated. Based on the general traveling solutions of the linear governing

equations for the layer and half-space, a method to solve this kind of the problems by means of functional
equations has been proposed. Under the conditions of neglecting friction between the layer and half-space and the
incident angle less than the critical value, the concrete solution for the problem has been given. The results show

that the nonlinear distortions of the elastic wave ®eld in the layer and half-space have arisen, which depend only on
two dimensionless parameters relative to the properties of media, wave number, applied pressure and thickness of
the layer. Similar to the case for in®nite media, when thickness of the layer is ®nite, the leading edge of the separate

zone at the interface is smooth, the distribution of the compressive stress is continuous, but not smooth at the
trailing edge and result here in the jump of the compressive stress. The extent of the separate zone increase with the
decrease of thickness of the layer. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the classical elastic theory, it is extremely important that the in¯uence of the demarcation face
between media, i.e. interface, upon the elastic wave ®led (Ewing, 1957; Achenbach, 1973). In the past
research works, the preponderance of the work has been concerned with the bilateral interface, i.e. that
across which the ®eld quantities are continuous. But, a lot of interface in the practice problems has no
bilateral characteristics, for example the contact face between the engineering structure members or the
machine parts, the fault plane in the earth's crust, the crack face in materials and so on. They can't hold
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tensile traction, but only shear traction through friction. In contrast with bilateral interface, Comninou
and Dundurs (1977) refer to this kind of interfaces as the unilateral interface. In the elastic wave ®eld,
the constrain of the unilateral interface on the ®eld quantities is a kind of the nonlinear constrain, and
problems corresponding to it are more complex than that for the bilateral interface with the linear
constrain. Since 1977, the problems of the elastic wave propagation under the unilateral interface were
independently deeply attacked by Miller (1977, 1978, 1979); Miller and Tran (1981a, 1981b) using the
method of equivalent linearization, and by Comninou and Dundurs (1977, 1978a, 1978b, 1979a, 1979b,
1980); Comninou et al. (1982); Dundurs and Comninou (1979); Barber (1982); Chen et al. (1983) using
the corrective method for the bilateral solutions, the important distortions behaviors in this kind of the
elastic wave ®eld, such as the increase in frequencies, phase shift, dissipation of energy etc., have been
revealed. Recently, Wang et al. (1997, 1998) have intensively investigated the problems of re-
polarizations for this kind of the elastic wave ®eld, Zharii et al. (1995, 1996) discussed in detail
theoretical modeling of a traveling wave ultrasonic motor related to it. However, it should be noted that
the method of equivalent linearization is an approximate approach which make the nonlinear constrains
at the interface linearization based on the certain assumptions, therefore, available to analyzing the anti-
plane(or plane) problems in which media can be slided along the interface, but not separated (Sesawa
and Kanai, 1940; Kanai, 1961; Iwan, 1973). As the corrective method for the bilateral solutions is an
analytical method based on the bilateral solutions, consequently, it demands the bilateral solution for
the problem to be solved is existent and relatively simple, otherwise, the solution for the problem is
impossible or very di�cult (Comninou and Dundurs, 1977, 1978a, 1978b). Precisely because of this, so
far the solved problems have been principally con®ned to that in in®nite media with relation to two
half-space. In this paper, the interaction of an incident harmonic plane elastic wave with the unilateral
interface between a layer with the ®nite thickness and an elastic half-space has been considered. Based
on the general traveling solution of the linear governing equations for the layer and half space, a
method to solve this kind of problems by means of functional equations has been proposed. Under the
conditions of neglecting friction between the layer and half-space and the incident angle less than the
critical value, the concrete solution for the problem has been given. The results show that the nonlinear

Fig. 1. Interaction of elastic waves with the unilateral interface between a layer and a half-space.

B.-Z. Gai / International Journal of Solids and Structures 37 (2000) 5233±52455234



distortions of the elastic wave ®eld in the layer and half-space have arisen, which depend only on two
dimensionless parameters relating to the properties of media, wave number, applied pressure and
thickness of the layer. Similar to the case for in®nite media, when thickness of the layer is ®nite, the
leading edge of the separate zone at the interface is smooth, the distribution of the compressive stress is
continuous; but not smooth at the trailing edge and result here in the jump of the compressive stress.
The extent of the separate zone increase with the decrease of thickness of the layer.

2. Mathematical statement

The problem treated here is shown on Fig. 1. An elastic layer with thickness H is forced on an elastic
half-space by the applied pressure p1: Suppose, the layer and half-space are the isotropic linear elastic
media with Lame constants, longitudinal and transversal wave velocity l, m, cL, cT and l�, m�, c�L, c

�
T,

respectively. There is no friction between the layer and half-space. A harmonic plane P or SV wave
strikes the interface between them from the half-space at angle of incidence y0: Thus, the elastic wave
®elds in the layer and half-space are as follows

j � fj
ÿ
zÿ pjy

�� gj
ÿ
z� pjy

� �1a�

c � fc
ÿ
zÿ pcy

�� gc
ÿ
z� pcy

� �in the half-space� �1b�

j� � f �j
ÿ
zÿ p�jy

�� g�j
ÿ
z� p�jy

� �1c�

c� � f �c
ÿ
zÿ p�cy

�� g�c
ÿ
z� p�cy

� �in the layer� �1d�

wherej, c, j�, c� are Lame potential functions in the half-space and layer respectively; fj, gj, fc, gc,
f �j, g

�
j, f

�
c, g

�
c are C 2 kind real function of their arguments, fj, fc are known incident waves; z � xÿ ct

is the moving coordinate at the interface y � 0, c � c0=sin y0 is the apparent velocity of propagation of
elastic waves along the interface; c0 is incident wave velocity which equals cL (P wave incidence )or cT

(SV wave incidence); pj �
�����������������������
�c=cL�2 ÿ 1

q
, pc �

�����������������������
�c=cT�2 ÿ 1

q
, p�j �

�����������������������
�c=c�L�2 ÿ 1

q
, p�c �

�����������������������
�c=c�T�2 ÿ 1

q
; x, y

are space coordinates; t is time. Here, only the case considered is that the incident angle y0 does not
exceed the critical value, i.e. y0 < ycr � sinÿ1�cL=c

�
L� (P wave incidence) or min �sinÿ1�cT=cL�,

sinÿ1�cT=c
�
L��, (SV wave incidence), thus, in this case pj, pc, p

�
j, p

�
c are all real numbers.

From Eqs. (1a)±(1d), the displacement and stress in the half-space and layer are easily obtained as
follows

u � f 0j � g 0j ÿ pc
�
f 0j ÿ g 0c

�
�2a�

v � pj
�
ÿ f 0j � g 0j

�
ÿ f 0c ÿ g 0c �2b�

sx �
h
A� 2m

�
1ÿ p2

f

�i�
f 00j � g 00j

�
ÿ B

�
f 00c ÿ g 00c

�
�2c�

sy � A
�
f 00j � g 00j

�
� B

�
f 00c ÿ g 00c

�
�2d�
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txy � m
�
p2
c ÿ 1

�h
R
�
ÿ f 00j � g 00j

�
� f 00c � g 00c

i
�2e�

u� � f �
0

j � g�
0

j ÿ p�c
�
f �

0
c ÿ g�

0
c

�
�3a�

v� � p�j
�
ÿ f �

0
j � g�

0
j

�
ÿ f �

0
c ÿ g�

0
c �3b�

s�x �
h
A� � 2m

�
1ÿ p2

f

�i�
f �

00
j � g�

00
j

�
ÿ B�

�
f �

00
c ÿ g�

00
c

�
�3c�

s�y � A�
�
f �

00
j � g�

00
j

�
� B�

�
f �

00
c ÿ g�

00
c

�
�3d�

t�xy � m�
�
p�

2

c ÿ 1
�h

R�
�
ÿ f �

00
j � g�

00
j

�
� f �

00
c � g�

00
c

i
�3e�

where u, v, sx, sy, txy and u�, v�, s�x, s
�
y, t

�
xy are displacements in x, y directions, normal stresses and

shear stresses in the half-space and layer, respectively; A � l� �l� 2m�p2
j, B � 2mpc, R � 2pj=

��������������
p2
c ÿ 1

q
;

A� � l� � �l� � 2m��p�2j , B� � 2m�p�c, R
� � 2p�j=

���������������
p�2c ÿ 1

q
; prime 0 denotes the derivative of function with

respect to its argument.
At the interface y � 0 between the layer and half-space, two kinds of zones can be usually arisen. One

is that referred to as separate zone and denoted by Isz; the other contact zone denoted by Icz: In the two
kinds of zones, the stress (the same as the bilateral interface) remain to be continuous, and the shear
stress at the interface must be zero due to neglecting friction, thus, the conditions at the interface can be
written as

n�z� � n��z�, sy�z� � s�y�z�

txy�z� � t�xy�z� � 0

N�z� � sy�z� � s�y�z�E0

9>>>>>=>>>>>;
�z 2 Icz� �4�

sy�z� � s�y�z� � 0

txy�z� � t�xy�z� � 0

Dv � v�z� ÿ v��z�r0

9>>>>=>>>>;�z 2 Isz � �5�

where N�z� is the normal traction of contact zone at the interface, Dv�z� is the gap of separate zone at
the interface. The boundary conditions at the top surface y � ÿH of the layer are

s�y�z� � ÿp1, �6a�

t�xy�z� � 0 �6b�
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3. Solution of the problem

Substituting Eqs. (2a)±(2e), (3a)±(3e) into Eqs. (4), (5), (6a), (6b), we have
in the contact zone z 2 Icz

g 00j�z� � f 00j�z� ÿ
p�j � R�

R�
ÿ
pj � R

�hf � 00c �z� � g�
00

c �z�
i

�7a�

g 00c�z� � ÿf 00c�z� �
R

R�

ÿ
p�j � R�

�ÿ
pj � R

� hf � 00c �z� � g�
00

c �z�
i

�7b�

f �
00

j �z� �
A

A�
f 00j�z� �

B

A�
f 00c�z� ÿ

" �A� BR�ÿp�j � R�
�

2A�R�
ÿ
pj � R

� � A� � B�R�

2A�R�
ÿ 1

R�

#
� f �

00
j �z�

ÿ
" �A� BR�ÿp�j � R�

�
2A�R�

ÿ
pj � R

� � A� ÿ B�R�

2A�R�
ÿ 1

R�

#
g�
00 �z� �7c�

g�
00

j �z� �
A

A�
f 00j�z� �

B

A�
f 00c�z� ÿ

" �A� BR�ÿp�j � R�
�

2A�R�
ÿ
pj � R

� � A� � B�R�

2A�R�

#
f �

00
c �z�

ÿ
" �A� BR�ÿp�j � R�

�
2A�R�

ÿ
pj � R

� � A� ÿ B�R�

2A�R�

#
g�
00

c �z� �7d�

" �A� BR�ÿp�j � R�
�

�A� � B�R��ÿpj � R
� ÿ A� ÿ B�R�

A� � B�R�

#
f �

00
c �z� �

" �A� BR�ÿp�j � R�
�

�A� � B�R��ÿpj � R
� ÿ 1

#
g�
00

c �z�

� A� ÿ B�R�

A� � B�R�
f �

00
c
�
zÿ ÿp�j ÿ p�c

�
H
�� g�

00
c
�
zÿ ÿp�j � p�c

�
H
�

� 2AR�

A� � B�R�
f �

00
j �z� �

2BR�

A� � B�R�
f 00c�z� �

R�p1

A� � B�R�
�8a�

" �A� BR�ÿp�j � R�
�

�A� � B�R��ÿpj � R
� � 1

#
f �

00
c �z� �

" �A� BR�ÿp�j � R�
�

�A� � B�R��ÿpj � R
� � A� ÿ B�R�

A� � B�R�

#
g�
00

c �z�

ÿ f �
00

c
�
z� ÿp�j � p�c

�
H
�ÿ A� ÿ B�R�

A� � B�R�
g�
00

c
�
z� ÿp�j ÿ p�c

�
H
�

� 2AR�

A� � B�R�
f 00j�z� �

2BR�

A� � B�R�
f 00c�c� �

R�p1

A� � B�R�

�8b�

in the separate zone, z 2 Isz
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g 00j�z� � ÿ
Aÿ BR

A� BR
f 00j�z� ÿ

2B

A� BR
f 00c�z� �9a�

g 00j�z� �
2AR

A� BR
f 00j�z� ÿ

Aÿ BR

A� BR
f 00c�z� �9b�

f �
00

j �z� �
A� ÿ B�R�

2A�R�
f �

00
c �z� �

A� � B�R�

2A�R�
g�
00

c �z� �9c�

g�
00

j �z� � ÿ
A� � B�R�

2A�R�
f �

00
c �z� ÿ

A� ÿ B�R�

2A�R�
g�
00

c �z� �9d�

f �
00

c
�
z� ÿp�j � p�c

�
H
�ÿ f �

00
c �z� �

A� ÿ B�R�

A� � B�R�
�
n
g�
00

c
�
z� ÿp�j ÿ p�c

�
H
�ÿ g�c�z�

o
� ÿ R�p1

A� � B�R�
�10a�

A� ÿ B�R�

A� � B�R�
n
f �

00
c
�
zÿ ÿp�j ÿ p�c

�
H
�ÿ f �

00
c �z�

o
� g�

00
c
�
zÿ ÿp�j � p�c

�
H
�ÿ g�

00
c �z� �

R�p1

A� � B�R�
�10b�

The incident harmonic plane P (or SV) wave may be taken as

fj�z, y�
ÿ
or fc�z, y�

� � ReF0e
ik

�
zÿ

cos y0
sin y0

y

�
�11�

where F0 is a given complex number which prescribe the amplitude and initial phase of the incident
wave and is taken here as F0 � jF0jei

p
2 ; k � k0sin y0 is the apparent velocity for incident wave along

interface; o is the angular frequency for incident wave; Re express real part; cos y0=sin y0�pj, fc�z, y� �
0 (P wave incidence) or cosy0=siny0 � pc, ff�z,y� � 0 (SV wave incidence). For the sake of simplicity,
only the case considered below will be that for P wave incidence. In this case, according to the method
constructing the solution for the linear functional equation (Kuczma, 1968; Peluch and Salkovskii,
1974), the solutions of the functional Eqs. (8a) and (8b) should be taken as

f �
00

c �z� � Re
�
Cfe

ikz
�
� C 0

f �12a�

g�
00

c �z� � Re
�
Cge

ikz
�
� C 0

g �12b�

in which Cf, Cg, C
0
f , C

0
g are constants to be determined. Substituting Eqs. (12a) and (12b) into Eqs. (8a)

and (8b) we have,

ÿCf=k � Cg=k � Ac � �d1 � id2�mAF0

D1 � iD2
�13a�

C 0
f � C 0

g � A0
c �

1

2

m

l� 1
p1 �13b�
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D1 � 1ÿ n2 � n2cos
�
k
ÿ
p�j ÿ p�c

�
H
�ÿ cos

�
k
ÿ
p�j � p�c

�
H
� �13c�

D2 � �l� 1�
n

sin
�
k
ÿ
p�j � p�c

�
H
�ÿ n � �sin�k

ÿ
p�k ÿ p�c

�
H
o

�13d�

d1 � �n� 1� ÿ ncos
�
k
ÿ
p�j ÿ p�c

�
H
�ÿ cos

�
k
ÿ
p�j � p�c

�
H
� �13e�

d2 � sin
�
k
ÿ
p�j ÿ p�c

�
H
�ÿ n sin

�
k
ÿ
p�j ÿ p�c

�
H
� �13f�

l �
�A� BR�ÿp�j � R�

�
�A� � B�R��ÿpj � R

� ÿ 1, �13g�

m � R�

A� � B�R�
, �13h�

n � A� ÿ B�R�

A� � B�R�
�13k�

Similarly, the solutions of the functional Eqs. (10a) and (10b) should be taken as

f �
==

c �z� � Sfz� S0
f , �14a�

g�
==

c �z� � Sgz� S0
g �14b�

in which Sf, Sg, S
0
f , S

0
g are constants to be determined. Substituting Eqs. (14a)±(14c) into Eqs. (10a),

(10b) we have

Sf � Sg � mh
�n� 1�p�f ÿ �nÿ 1�p�j

i
H

�14c�

S0
f � S0

g � A0
j �

lm

2�l� 1�p
1 �14d�

Thus, Eqs. (14a)±(14e) become

f �
00

c �z� � g�
00

c �z� �
m

2�l� 1�

"
1ÿ 2�l� 1�
�n� 1�p�j ÿ �nÿ 1�p�c

� z
H

#
p1 �14e�

which will coincide with Eqs. (12a), (12b), when no incident wave strikes the interface because, in this
case, the whole interface will be closed under the pre-pressure p1 and the separate zone will vanish.

4. Interface State

At the contact zone, z 2 Icz, from Eqs. (3a)±(3e), (7a)±(7d), (12a), (12b), we have
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N�Z� � N�z� � 2Af 00j�z� ÿ
l� 1

m

h
f �

00
c �z� � g�

00
c �z�

i
� A0

�
sin Zÿ p1

A0

�
�15�

where Z � kz is the dimensionless moving coordinate at the interface; A0 � 2k2AjF0j: At the separate
zone, z 2 Isz from Eqs. (2a)±(2e), (3a)±(3e), (9a)±(9d), (14a)±(14e) we have

kDv 0�Z� � Dv 0�z� � p�j � R�

R�
h
f �

00
j �z� � g�

00
c �z�

i
ÿ 2A

pj � R

A� BR
f 00j�z�

� A0

ÿ
pj � R

�
A� BR

"
ÿ sin Z� p1

A0

�
1ÿ 2

q

H0
Z
�#

�16�

whereq � �l� 1�=��n� 1�p�j ÿ �nÿ 1�p�c�; H0 � kH is dimensionless thickness of the layer.
Integrating the above equation, we have

Dv�Z� �
A0

ÿ
pj � R

�
k�A� BR�

"
cos Z� p1

A0
Z
�
1ÿ q

H0
Z
�
ÿ L

#
�17�

where L is a constant. At the leading and trailing edges Z � b and a of the separate zone, since
Dv�Z� � 0, thus, from the above equation, we have

Fig. 2. Dimensionless traction N̂�Z� and gap Dv̂ at interface �p1=A0 � 0:5, q=H0 � 0:02�:
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L � p1

A0
a
�
1ÿ q

H0
a
�
� cos a � p1

A0
b
�
1ÿ q

H0
b
�
� cos b �18�

At the same time, when a closed point at the interface enter into the separate zone, the stress in this
point should be released out, hence, we also have

sy � s�y �
k�A� BR�
pj � R

Dv 0�b� � 0

�
brp

2

�
�19�

Substituting (16) into the above equation, we obtain

sin b � p1

A0

�
1ÿ 2

q

H0
b
�

�20�

Eqs. (15), (17), (18) and (20) have ®xed the distribution for the normal traction N�Z�, gap Dv�Z� and the
extent of the contact and separate zones. Only the interval ÿpRZRp need be considered at the
interface, because of the periodicity of all ®eld quantities. Take dimensionless quantities

N̂�Z� � N�Z�
A0

, �21a�

Dv̂�Z� � k�A� BR�
A0

ÿ
pj � R

�Dv�Z� �21b�

Fig. 3. Variations of interface gap Dv̂ with Z and p1=A0 �q=H0 � 0:02).
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Fig. 4. Process determining separate zone at the interface �q=H0 � 0:02).
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Fig. 2 shows the variation of N̂�Z� and Dv̂�Z� with Z for the combined parameters p1=H0 � 0:5 and
q=H0 � 0:02: On the ®gure, the distribution curve of the dimensionless gap Dv̂�Z� is a hill in shape with
vanishing slope at the leading edge �Z � 2:6788�, and is oblique at the trailing edge �Z � ÿ0:7317�, where
the jump with amplitude ÿ1.1146 appears for the distribution curve of the dimensionless normal
traction N̂�Z�: Fig. 3 shows the variations of Dv̂�Z� with Z for the combined parameters q=H0 � 0:02 and
p1=A0 � 0:2, 0.5, 0.8. We can see from this ®gure that the amplitude and extent of gaps are all
maximum for p1=A0 � 0:2, second for 0.5 and minimum for 0.8. Fig. 4 shows the process determining
the separate zone by means of solving simultaneously, Eqs. (18) and (20). The curves on the ®gure are
the calculating results when the values of the combined parameters are taken as p1=A0 � 0:2, 0.5, 0.8
and q=H0 � 0:02: Fig. 5 shows the variations of the leading and trailing edge locations b, a, and the
extent �bÿ a� of the separate zone with the combined parameters q=H0 and p1=A0 in which the solid
line corresponds to p1=A0 � 0:5, the broken line to 0.2, the dot dash line to 0.8.

From the above analysis and the numerical calculating results, the following conclusions may be
reached.

1. The interface state depends only on two combined parameters p1=A0 and q=H0: The former is a pre-
pressure non-dimensioned by A0 and independent of thickness of the layer; the latter is a reciprocal
of thickness of the layer non-dimensional by k=q and independent of the pre-pressure, but both are
relative to the properties of media, characteristics of the incident wave.

2. The separate zone at the interface will arise only when the condition

1ÿ 1

p1=A0
R q

H0
�22�

Fig. 5. Variations of extent of separate zone with q=H0:
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is satis®ed. When dimensionless thickness H041, the above inequality becomes �p1=A0�R1, which
is the same with the results given by Comninou and Dundurs (1977) for the case of in®nite media.

3. It is always smooth at the leading edge of the separate zone for any thickness of the layer.
Consequently, here the traction at the interface remains continuous, but, generally, no smooth at the
trailing edge, a jump of the traction at the interface will arise here, in other words, a crash between
the layer and half-space will occur here in the elastic wave ®eld.

4. The extent of the separate zone will decrease with the increase of parameter p1=A0, and increase with
the decrease of parameter q=H0: When thickness of the layer H041, pre-pressure p140, i.e. for
two half-space that does not apply pre-pressure, the unilateral interface between them will become a
free surface from stress, which is the result given by Comninou and Dundurs (1977) for two half-
space.
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